Existence and Uniqueness of Galois Connections
Another important property of Galois connections is that lower adjoints preserve all suprema that exist within their domain. Dually, upper adjoints preserve all existing infima. From these properties, one can also conclude monotonicity of the adjoints immediately. The adjoint functor theorem for order theory states that the converse implication is also valid in certain cases: especially, any mapping between complete lattices that preserves all suprema is the lower adjoint of a Galois connection.
In this situation, an important feature of Galois connections is that one adjoint uniquely determines the other. Hence one can strengthen the above statement to guarantee that any supremum-preserving map between complete lattices is the lower adjoint of a unique Galois connection. The main property to derive this uniqueness is the following: For every x in A, f ∗(x) is the least element y of B such that x ≤ f ∗(y). Dually, for every y in B, f ∗(y) is the greatest x in A such that f ∗(x) ≤ y. The existence of a certain Galois connection now implies the existence of the respective least or greatest elements, no matter whether the corresponding posets satisfy any completeness properties. Thus, when one adjoint of a Galois connection is given, the other can be defined via this property. On the other hand, some arbitrary function f is a lower adjoint if and only if each set of the form { x in A | f(x) ≤ b }, b in B, contains a greatest element. Again, this can be dualized for the upper adjoint.
Read more about this topic: Galois Connection
Famous quotes containing the words existence, uniqueness and/or connections:
“And from a cliff top is proclaimed
The gathering of the souls for birth,
The trial by existence named,
The obscuration upon earth.”
—Robert Frost (18741963)
“Until now when we have started to talk about the uniqueness of America we have almost always ended by comparing ourselves to Europe. Toward her we have felt all the attraction and repulsions of Oedipus.”
—Daniel J. Boorstin (b. 1914)
“Imagination is an almost divine faculty which, without recourse to any philosophical method, immediately perceives everything: the secret and intimate connections between things, correspondences and analogies.”
—Charles Baudelaire (18211867)