Galois Connection - Connection To Category Theory

Connection To Category Theory

Every partially ordered set can be viewed as a category in a natural way: there is a unique morphism from x to y if and only if xy. A Galois connection is then nothing but a pair of adjoint functors between two categories that arise from partially ordered sets. In this context, the upper adjoint is the right adjoint while the lower adjoint is the left adjoint. However, this terminology is avoided for Galois connections, since there was a time when posets were transformed into categories in a dual fashion, i.e. with arrows pointing in the opposite direction. This led to a complementary notation concerning left and right adjoints, which today is ambiguous.

Read more about this topic:  Galois Connection

Famous quotes containing the words connection to, connection, category and/or theory:

    One must always maintain one’s connection to the past and yet ceaselessly pull away from it. To remain in touch with the past requires a love of memory. To remain in touch with the past requires a constant imaginative effort.
    Gaston Bachelard (1884–1962)

    Children of the same family, the same blood, with the same first associations and habits, have some means of enjoyment in their power, which no subsequent connections can supply; and it must be by a long and unnatural estrangement, by a divorce which no subsequent connection can justify, if such precious remains of the earliest attachments are ever entirely outlived.
    Jane Austen (1775–1817)

    The truth is, no matter how trying they become, babies two and under don’t have the ability to make moral choices, so they can’t be “bad.” That category only exists in the adult mind.
    Anne Cassidy (20th century)

    The theory of truth is a series of truisms.
    —J.L. (John Langshaw)