Fuzzy C-means Clustering
In fuzzy clustering, each point has a degree of belonging to clusters, as in fuzzy logic, rather than belonging completely to just one cluster. Thus, points on the edge of a cluster, may be in the cluster to a lesser degree than points in the center of cluster. An overview and comparison of different fuzzy clustering algorithms is available.
Any point x has a set of coefficients giving the degree of being in the kth cluster wk(x). With fuzzy c-means, the centroid of a cluster is the mean of all points, weighted by their degree of belonging to the cluster:
The degree of belonging, wk(x), is related inversely to the distance from x to the cluster center as calculated on the previous pass. It also depends on a parameter m that controls how much weight is given to the closest center. The fuzzy c-means algorithm is very similar to the k-means algorithm:
- Choose a number of clusters.
- Assign randomly to each point coefficients for being in the clusters.
- Repeat until the algorithm has converged (that is, the coefficients' change between two iterations is no more than, the given sensitivity threshold) :
- Compute the centroid for each cluster, using the formula above.
- For each point, compute its coefficients of being in the clusters, using the formula above.
The algorithm minimizes intra-cluster variance as well, but has the same problems as k-means; the minimum is a local minimum, and the results depend on the initial choice of weights.
The expectation-maximization algorithm is a more statistically formalized method which includes some of these ideas: partial membership in classes.
Fuzzy c-means has been a very important tool for image processing in clustering objects in an image. In the 70's, mathematicians introduced the spatial term into the FCM algorithm to improve the accuracy of clustering under noise.
Read more about this topic: Fuzzy Clustering
Famous quotes containing the word fuzzy:
“Even their song is not a sure thing.
It is not a language;
it is a kind of breathing.
They are two asthmatics
whose breath sobs in and out
through a small fuzzy pipe.”
—Anne Sexton (19281974)