Group Theoretic Version
Given two groups G and H and a group homomorphism f : G→H, let K be a normal subgroup in G and φ the natural surjective homomorphism G→G/K (where G/K is a quotient group). If K is a subset of ker(f) then there exists a unique homomorphism h:G/K→H such that f = h φ.
The situation is described by the following commutative diagram:
By setting K = ker(f) we immediately get the first isomorphism theorem.
Read more about this topic: Fundamental Theorem On Homomorphisms
Famous quotes containing the words group and/or version:
“Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.”
—Mary Barnett Gilson (1877?)
“Exercise is the yuppie version of bulimia.”
—Barbara Ehrenreich (b. 1941)