Group Theoretic Version
Given two groups G and H and a group homomorphism f : G→H, let K be a normal subgroup in G and φ the natural surjective homomorphism G→G/K (where G/K is a quotient group). If K is a subset of ker(f) then there exists a unique homomorphism h:G/K→H such that f = h φ.
The situation is described by the following commutative diagram:
By setting K = ker(f) we immediately get the first isomorphism theorem.
Read more about this topic: Fundamental Theorem On Homomorphisms
Famous quotes containing the words group and/or version:
“The trouble with tea is that originally it was quite a good drink. So a group of the most eminent British scientists put their heads together, and made complicated biological experiments to find a way of spoiling it. To the eternal glory of British science their labour bore fruit.”
—George Mikes (b. 1912)
“Exercise is the yuppie version of bulimia.”
—Barbara Ehrenreich (b. 1941)