Fundamental Theorem of Calculus - Proof of The Corollary

Proof of The Corollary

Suppose F is an antiderivative of f, with f continuous on . Let

.

By the first part of the theorem, we know G is also an antiderivative of f. It follows by the mean value theorem that there is a number c such that G(x) = F(x) + c, for all x in . Letting x = a, we have

which means c = − F(a). In other words G(x) = F(x) − F(a), and so

Read more about this topic:  Fundamental Theorem Of Calculus

Famous quotes containing the words proof of the, proof of and/or proof:

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.
    Herman Melville (1819–1891)

    To cease to admire is a proof of deterioration.
    Charles Horton Cooley (1864–1929)