In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 is either prime itself or is the product of prime numbers, and that, although the order of the primes in the second case is arbitrary, the primes themselves are not. For example,
The theorem is stating two things: first, that 1200 can be represented as a product of primes, and second, no matter how this is done, there will always be four 2s, one 3, two 5s, and no other primes in the product.
Read more about Fundamental Theorem Of Arithmetic: History, Proof, Generalizations
Famous quotes containing the words fundamental, theorem and/or arithmetic:
“The fundamental laws of physics do not describe true facts about reality. Rendered as descriptions of facts, they are false; amended to be true, they lose their explanatory force.”
—Nancy Cartwright (b. 1945)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.”
—Ralph Waldo Emerson (18031882)