Fundamental Domain - Hints at General Definition

Hints At General Definition

Given an action of a group G on a topological space X by homeomorphisms, a fundamental domain (also called fundamental region) for this action is a set D of representatives for the orbits. It is usually required to be a reasonably nice set topologically, in one of several precisely defined ways. One typical condition is that D is almost an open set, in the sense that D is the symmetric difference of an open set in G with a set of measure zero, for a certain (quasi)invariant measure on X. A fundamental domain always contains a free regular set U, an open set moved around by G into disjoint copies, and nearly as good as D in representing the orbits. Frequently D is required to be a complete set of coset representatives with some repetitions, but the repeated part has measure zero. This is a typical situation in ergodic theory. If a fundamental domain is used to calculate an integral on X/G, sets of measure zero do not matter.

For example, when X is Euclidean space Rn of dimension n, and G is the lattice Zn acting on it by translations, the quotient X/G is the n-dimensional torus. A fundamental domain D here can be taken to be n, whose boundary consists of the points whose orbit has more than one representative in D.

Read more about this topic:  Fundamental Domain

Famous quotes containing the words hints, general and/or definition:

    When delicate and feeling souls are separated, there is not a feature in the sky, not a movement of the elements, not an aspiration of the breeze, but hints some cause for a lover’s apprehension.
    Richard Brinsley Sheridan (1751–1816)

    Each victim of suicide gives his act a personal stamp which expresses his temperament, the special conditions in which he is involved, and which, consequently, cannot be explained by the social and general causes of the phenomenon.
    Emile Durkheim (1858–1917)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)