Examples
Most functional integrals are actually infinite but the quotient of two functional integrals can be finite. The functional integrals that can be solved exactly usually start with the following Gaussian integral:
By functionally differentiating this with respect to J(x) and then setting J to 0 this becomes an exponential multiplied by a polynomial in f. For example setting we find:
where a,b and x are 4-dimensional vectors. This comes from the formula for the propagation of a photon in quantum electrodynamics. Another useful integral is the functional delta function:
which is useful to specify constraints. Functional integrals can also be done over Grassmann-valued functions where which is useful in quantum electrodynamics for calculations involving fermions.
Read more about this topic: Functional Integration
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)