Functional Equation - Solving Functional Equations

Solving Functional Equations

Solving functional equations can be very difficult but there are some common methods of solving them. For example, in dynamic programming a variety of successive approximation methods are used to solve Bellman's functional equation, including methods based on fixed point iterations. The main method of solving elementary functional equations is substitution. It is often useful to prove surjectivity or injectivity and prove oddness or evenness, if possible. It is also useful to guess possible solutions. Induction is a useful technique to use when the function is only defined for rational or integer values.

A discussion of involutary functions is useful. For example, consider the function

Composing f with itself gives

Many other functions also satisfy the functional equation :, including

Example 1: Find all functions f that satisfy

for all assuming ƒ is a real-valued function.

Let x = y = 0

So ƒ(0)2 = 0 and ƒ(0) = 0.

Now, let y = −x:

A square of a real number is nonnegative, and a sum of nonnegative numbers is zero iff both numbers are 0. So ƒ(x)2 = 0 for all x and ƒ(x) = 0 is the only solution.

Read more about this topic:  Functional Equation

Famous quotes containing the words solving and/or functional:

    Science is a dynamic undertaking directed to lowering the degree of the empiricism involved in solving problems; or, if you prefer, science is a process of fabricating a web of interconnected concepts and conceptual schemes arising from experiments and observations and fruitful of further experiments and observations.
    James Conant (1893–1978)

    Stay-at-home mothers, . . . their self-esteem constantly assaulted, . . . are ever more fervently concerned that their offspring turn out better so they won’t have to stoop to say “I told you so.” Working mothers, . . . their self-esteem corroded by guilt, . . . are praying their kids turn out functional so they can stop being defensive and apologetic and instead assert “See? I did do it all.”
    Melinda M. Marshall (20th century)