Basic Mathematical Definition
For a multivariate function, functional decomposition generally refers to a process of identifying a set of functions such that
where is some other function. Thus, we would say that the function is decomposed into functions . This process is intrinsically hierarchical in the sense that we can (and often do) seek to further decompose the functions into a collection of constituent functions such that
where is some other function. Decompositions of this kind are interesting and important for a wide variety of reasons. In general, functional decompositions are worthwhile when there is a certain "sparseness" in the dependency structure; that is, when constituent functions are found to depend on approximately disjoint sets of variables. Thus, for example, if we can obtain a decomposition of into a hierarchical composition of functions such that, as shown in the figure at right, this would probably be considered a highly valuable decomposition.
Read more about this topic: Functional Decomposition
Famous quotes containing the words basic, mathematical and/or definition:
“Justice begins with the recognition of the necessity of sharing. The oldest law is that which regulates it, and this is still the most important law today and, as such, has remained the basic concern of all movements which have at heart the community of human activities and of human existence in general.”
—Elias Canetti (b. 1905)
“What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.”
—Boris Pasternak (18901960)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)