Basic Mathematical Definition
For a multivariate function, functional decomposition generally refers to a process of identifying a set of functions such that
where is some other function. Thus, we would say that the function is decomposed into functions . This process is intrinsically hierarchical in the sense that we can (and often do) seek to further decompose the functions into a collection of constituent functions such that
where is some other function. Decompositions of this kind are interesting and important for a wide variety of reasons. In general, functional decompositions are worthwhile when there is a certain "sparseness" in the dependency structure; that is, when constituent functions are found to depend on approximately disjoint sets of variables. Thus, for example, if we can obtain a decomposition of into a hierarchical composition of functions such that, as shown in the figure at right, this would probably be considered a highly valuable decomposition.
Read more about this topic: Functional Decomposition
Famous quotes containing the words basic, mathematical and/or definition:
“It is not an exaggeration to say that play is as basic to your childs total development as good food, cleanliness, and rest.”
—Joanne E. Oppenheim (20th century)
“The most distinct and beautiful statement of any truth must take at last the mathematical form.”
—Henry David Thoreau (18171862)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)