Full width at half maximum (FWHM) is an expression of the extent of a function, given by the difference between the two extreme values of the independent variable at which the dependent variable is equal to half of its maximum value.
FWHM is applied to such phenomena as the duration of pulse waveforms and the spectral width of sources used for optical communications and the resolution of spectrometers.
The term full duration at half maximum (FDHM) is preferred when the independent variable is time.
The convention of "width" meaning "half maximum" is also widely used in signal processing to define bandwidth as "width of frequency range where less than half the signal's power is attenuated", i.e., the power is at least half the maximum. In signal processing terms, this is at most −3 dB of attenuation, called "half power point".
If the considered function is the normal distribution of the form
where is the standard deviation and can be any value (the width of the function does not depend on translation), then the relationship between FWHM and the standard deviation is
Another important distribution function, related to solitons in optics, is the hyperbolic secant:
Any translating element was omitted, since it does not affect the FWHM. For this impulse we have:
where arsech is the inverse hyperbolic secant.
Famous quotes containing the words full, width and/or maximum:
“There is a tide in the affairs of men
Which, taken at the flood, leads on to fortune;
Omitted, all the voyage of their life
Is bound in shallows and in miseries.
On such a full sea are we now afloat,
And we must take the current when it serves
Or lose our ventures.”
—William Shakespeare (15641616)
“Newly stumbling to and fro
All they find, outside the fold,
Is a wretched width of cold.”
—Philip Larkin (19221986)
“Probably the only place where a man can feel really secure is in a maximum security prison, except for the imminent threat of release.”
—Germaine Greer (b. 1939)