Examples
- The forgetful functor U : Grp → Set is faithful as each group maps to a unique set and the group homomorphism are a subset of the functions. This functor is not full as there are functions between groups which are not group homomorphisms. A category with a faithful functor to Set is (by definition) a concrete category; in general, that forgetful functor is not full.
- Let F : Set → Set be the functor which maps every set to the empty set and every function to the empty function. Then F is full, but is neither injective on objects nor on morphisms.
- The inclusion functor Ab → Grp is fully faithful.
Read more about this topic: Full And Faithful Functors
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)