Fuchsian Group - Limit Sets

Limit Sets

Because of the discrete action, the orbit Γz of a point z in the upper half-plane under the action of Γ has no accumulation points in the upper half-plane. There may, however, be limit points on the real axis. Let Λ(Γ) be the limit set of Γ, that is, the set of limit points of Γz for zH. Then Λ(Γ) ⊆ R ∪ ∞. The limit set may be empty, or may contain one or two points, or may contain an infinite number. In the latter case, there are two types:

A Fuchsian group of the first type is a group for which the limit set is the closed real line R ∪ ∞. This happens if the quotient space H/Γ has finite volume, but there are Fuchsian groups of the first kind of infinite covolume.

Otherwise, a Fuchsian group is said to be of the second type. Equivalently, this is a group for which the limit set is a perfect set that is nowhere dense on . Since it is nowhere dense, this implies that any limit point is arbitrarily close to an open set that is not in the limit set. In other words, the limit set is a Cantor set.

The type of a Fuchsian group need not be the same as its type when considered as a Kleinian group: in fact, all Fuchsian groups are Kleinian groups of type 2, as their limit sets (as Kleinian groups) are proper subsets of the Riemann sphere, contained in some circle.

Read more about this topic:  Fuchsian Group

Famous quotes containing the words limit and/or sets:

    An educational method that shall have liberty as its basis must intervene to help the child to a conquest of liberty. That is to say, his training must be such as shall help him to diminish as much as possible the social bonds which limit his activity.
    Maria Montessori (1870–1952)

    Wilson adventured for the whole of the human race. Not as a servant, but as a champion. So pure was this motive, so unflecked with anything that his worst enemies could find, except the mildest and most excusable, a personal vanity, practically the minimum to be human, that in a sense his adventure is that of humanity itself. In Wilson, the whole of mankind breaks camp, sets out from home and wrestles with the universe and its gods.
    William Bolitho (1890–1930)