General Definition
A linear fractional transformation defined by a matrix from PSL(2,C) will preserve the Riemann sphere P1(C) = C ∪ ∞, but will send the upper-half plane H to some open disk Δ. Conjugating by such a transformation will send a discrete subgroup of PSL(2,R) to a discrete subgroup of PSL(2,C) preserving Δ.
This motivates the following definition of a Fuchsian group. Let Γ ⊂ PSL(2,C) act invariantly on a proper, open disk Δ ⊂ C ∪ ∞, that is, Γ(Δ) = Δ. Then Γ is Fuchsian if and only if any of the following three properties hold:
- Γ is a discrete group (with respect to the standard topology on PSL(2,C)).
- Γ acts properly discontinuously at each point z ∈ Δ.
- The set Δ is a subset of the region of discontinuity Ω(Γ) of Γ.
That is, any one of these three can serve as a definition of a Fuchsian group, the others following as theorems. The notion of an invariant proper subset Δ is important; the so-called Picard group PSL(2,Z) is discrete but does not preserve any disk in the Riemann sphere. Indeed, even the modular group PSL(2,Z), which is a Fuchsian group, does not act discontinuously on the real number line; it has accumulation points at the rational numbers. Similarly, the idea that Δ is a proper subset of the region of discontinuity is important; when it is not, the subgroup is called a Kleinian group.
It is most usual to take the invariant domain Δ to be either the open unit disk or the upper half-plane.
Read more about this topic: Fuchsian Group
Famous quotes containing the words general and/or definition:
“A general loathing of a gang or sect usually has some sound basis in instinct.”
—Ezra Pound (18851972)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)