General Definition
A linear fractional transformation defined by a matrix from PSL(2,C) will preserve the Riemann sphere P1(C) = C ∪ ∞, but will send the upper-half plane H to some open disk Δ. Conjugating by such a transformation will send a discrete subgroup of PSL(2,R) to a discrete subgroup of PSL(2,C) preserving Δ.
This motivates the following definition of a Fuchsian group. Let Γ ⊂ PSL(2,C) act invariantly on a proper, open disk Δ ⊂ C ∪ ∞, that is, Γ(Δ) = Δ. Then Γ is Fuchsian if and only if any of the following three properties hold:
- Γ is a discrete group (with respect to the standard topology on PSL(2,C)).
- Γ acts properly discontinuously at each point z ∈ Δ.
- The set Δ is a subset of the region of discontinuity Ω(Γ) of Γ.
That is, any one of these three can serve as a definition of a Fuchsian group, the others following as theorems. The notion of an invariant proper subset Δ is important; the so-called Picard group PSL(2,Z) is discrete but does not preserve any disk in the Riemann sphere. Indeed, even the modular group PSL(2,Z), which is a Fuchsian group, does not act discontinuously on the real number line; it has accumulation points at the rational numbers. Similarly, the idea that Δ is a proper subset of the region of discontinuity is important; when it is not, the subgroup is called a Kleinian group.
It is most usual to take the invariant domain Δ to be either the open unit disk or the upper half-plane.
Read more about this topic: Fuchsian Group
Famous quotes containing the words general and/or definition:
“It has been an unchallengeable American doctrine that cranberry sauce, a pink goo with overtones of sugared tomatoes, is a delectable necessity of the Thanksgiving board and that turkey is uneatable without it.... There are some things in every country that you must be born to endure; and another hundred years of general satisfaction with Americans and America could not reconcile this expatriate to cranberry sauce, peanut butter, and drum majorettes.”
—Alistair Cooke (b. 1908)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)