General Definition
A linear fractional transformation defined by a matrix from PSL(2,C) will preserve the Riemann sphere P1(C) = C ∪ ∞, but will send the upper-half plane H to some open disk Δ. Conjugating by such a transformation will send a discrete subgroup of PSL(2,R) to a discrete subgroup of PSL(2,C) preserving Δ.
This motivates the following definition of a Fuchsian group. Let Γ ⊂ PSL(2,C) act invariantly on a proper, open disk Δ ⊂ C ∪ ∞, that is, Γ(Δ) = Δ. Then Γ is Fuchsian if and only if any of the following three properties hold:
- Γ is a discrete group (with respect to the standard topology on PSL(2,C)).
- Γ acts properly discontinuously at each point z ∈ Δ.
- The set Δ is a subset of the region of discontinuity Ω(Γ) of Γ.
That is, any one of these three can serve as a definition of a Fuchsian group, the others following as theorems. The notion of an invariant proper subset Δ is important; the so-called Picard group PSL(2,Z) is discrete but does not preserve any disk in the Riemann sphere. Indeed, even the modular group PSL(2,Z), which is a Fuchsian group, does not act discontinuously on the real number line; it has accumulation points at the rational numbers. Similarly, the idea that Δ is a proper subset of the region of discontinuity is important; when it is not, the subgroup is called a Kleinian group.
It is most usual to take the invariant domain Δ to be either the open unit disk or the upper half-plane.
Read more about this topic: Fuchsian Group
Famous quotes containing the words general and/or definition:
“The following general definition of an animal: a system of different organic molecules that have combined with one another, under the impulsion of a sensation similar to an obtuse and muffled sense of touch given to them by the creator of matter as a whole, until each one of them has found the most suitable position for its shape and comfort.”
—Denis Diderot (17131784)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)