Freiling's Axiom of Symmetry - Freiling's Argument

Freiling's Argument

Fix a function f in A. We will consider a thought experiment that involves throwing two darts at the unit interval. We probably aren't able to physically determine with infinite accuracy the actual values of the numbers x and y that are hit. Likewise, the question of whether "y is in f(x)" cannot actually be physically computed. Nevertheless, if f really is a function, then this question is a meaningful one and will have a definite "yes" or "no" answer.

Now wait until after the first dart, x, is thrown and then assess the chances that the second dart y will be in f(x). Since x is now fixed, f(x) is a fixed countable set and has Lebesgue measure zero. Therefore this event, with x fixed, has probability zero. Freiling now makes two generalizations:

  • Since we can predict with virtual certainty that "y is not in f(x)" after the first dart is thrown, and since this prediction is valid no matter what the first dart does, we should be able to make this prediction before the first dart is thrown. This is not to say that we still have a measurable event, rather it is an intuition about the nature of being predictable.
  • Since "y is not in f(x)" is predictably true, by the symmetry of the order in which the darts were thrown (hence the name "axiom of symmetry") we should also be able to predict with virtual certainty that "x is not in f(y)".

The axiom AX is now justified based on the principle that what will predictably happen every time this experiment is performed, should at the very least be possible. Hence there should exist two real numbers x, y such that x is not in f(y) and y is not in f(x).

Read more about this topic:  Freiling's Axiom Of Symmetry

Famous quotes containing the word argument:

    The argument ad feminam, all the old knives
    that have rusted in my back, I drive in yours,
    ma semblable, ma soeur!
    Adrienne Rich (b. 1929)