Connection To Graph Theory
Using the fact that in ZFC, we have (see above), it is not hard to see that the failure of the axiom of symmetry — and thus the success of — is equivalent to the following combinatorial principle for graphs:
-
- The complete graph on can be so directed, that every node leads to at most -many nodes.
- In the case of, this translates to: The complete graph on the unit circle can be so directed, that every node leads to at most countably-many nodes.
Thus in the context of ZFC, the failure of a Freiling axiom is equivalent to the existence of a specific kind of choice function.
Read more about this topic: Freiling's Axiom Of Symmetry
Famous quotes containing the words connection to, connection, graph and/or theory:
“It may comfort you to know that if your child reaches the age of eleven or twelve and you have a good bond or relationship, no matter how dramatic adolescence becomes, you children will probably turn out all right and want some form of connection to you in adulthood.”
—Charlotte Davis Kasl (20th century)
“Self-expression is not enough; experiment is not enough; the recording of special moments or cases is not enough. All of the arts have broken faith or lost connection with their origin and function. They have ceased to be concerned with the legitimate and permanent material of art.”
—Jane Heap (c. 18801964)
“In this Journal, my pen is a delicate needle point, tracing out a graph of temperament so as to show its daily fluctuations: grave and gay, up and down, lamentation and revelry, self-love and self-disgust. You get here all my thoughts and opinions, always irresponsible and often contradictory or mutually exclusive, all my moods and vapours, all the varying reactions to environment of this jelly which is I.”
—W.N.P. Barbellion (18891919)
“It makes no sense to say what the objects of a theory are,
beyond saying how to interpret or reinterpret that theory in another.”
—Willard Van Orman Quine (b. 1908)