Uses
The phenomenon of freezing point depression has many practical uses. The radiator fluid in an automobile is a mixture of water and ethylene glycol. As a result of freezing point depression, radiators do not freeze up in winter (unless it is extremely cold, e.g. -30 to -40 °C (-22 to -40 °F)). Road salting takes advantage of this effect to lower the freezing point of the ice it is placed on. Lowering the freezing point allows the street ice to melt at lower temperatures. The maximum depression of the freezing point is about −18 °C (−0 °F), so if the ambient temperature is lower, salt(sodium chloride) will be ineffective.
Freezing-point depression is used by some organisms that live in extreme cold. Such creatures have evolved means through which they can produce high concentration of various compounds such as sorbitol and glycerol. This elevated concentration of solute decreases the freezing point of the water inside them, preventing the organism from freezing solid even as the water around them freezes, or the air around them is very cold. Examples include some species of arctic-living fish, such as rainbow smelt, which need to be able to survive in freezing temperatures for a long time. In other animals, such as the spring peeper frog (Pseudacris crucifer), the molality is increased temporarily as a reaction to cold temperatures. In the case of the peeper frog, this happens by massive breakdown of glycogen in the frog's liver and subsequent release of massive amounts of glucose.
With the formula below, freezing-point depression can be used to measure the degree of dissociation or the molar mass of the solute. This kind of measurement is called cryoscopy (Greek cryo-cold, scopos-observe "observe the cold") and relies on exact measurement of the freezing point. The degree of dissociation is measured by determining the van 't Hoff factor i by first determining mB and then comparing it to msolute. In this case, the molar mass of the solute must be known. The molar mass of a solute is determined by comparing mB with the amount of solute dissolved. In this case, i must be known, and the procedure is primarily useful for organic compounds using a nonpolar solvent. Cryoscopy is no longer as common a measurement method as it once was, but it was included in textbooks at the turn of the 20th century. As an example, it was still taught as a useful analytic procedure in Cohen's Practical Organic Chemistry of 1910, in which the molar mass of naphthalene is determined using a Beckmann freezing apparatus.
Freezing-point depression can also be used as a purity analysis tool when analysed by differential scanning calorimetry. The results obtained are in mol%, but the method has its place, where other methods of analysis fail.
This is also the same principle acting in the melting-point depression observed when the melting point of an impure solid mixture is measured with a melting point apparatus, since melting and freezing points both refer to the liquid-solid phase transition (albeit in different directions).
In principle, the boiling point elevation and the freezing point depression could be used interchangeably for this purpose. However, the cryoscopic constant is larger than the ebullioscopic constant and the freezing point is often easier to measure with precision, which means measurements using the freezing point depression are more precise.
Read more about this topic: Freezing-point Depression