Free Surface

In physics, a free surface is the surface of a fluid that is subject to constant perpendicular normal stress and zero parallel shear stress, such as the boundary between two homogenous fluids, for example liquid water and the air in the Earth's atmosphere. Unlike liquids, gases cannot form a free surface on their own.

A liquid in a gravitational field will form a free surface if unconfined from above. Under mechanical equilibrium this free surface must be perpendicular to the forces acting on the liquid; if not there would be a force along the surface, and the liquid would flow in that direction. Thus, on the surface of the Earth, all free surfaces of liquids are horizontal unless disturbed (except near solids dipping into them, where surface tension distorts the surface in a region called the meniscus).

In a free liquid that is not affected by outside forces such as a gravitational field, internal attractive forces only play a role (e.g. Van der Waals forces, hydrogen bonds). Its free surface will assume the shape with the least surface area for its volume: a perfect sphere. Such behaviour can be expressed in terms of surface tension. It can be demonstrated experimentally by observing a large globule of oil placed below the surface of a mixture of water and alcohol having the same density so the oil has neutral buoyancy.

Read more about Free Surface:  Waves, Rotation, Related Terms

Famous quotes containing the words free and/or surface:

    Have you ever been up in your plane at night, alone, somewhere, 20,000 feet above the ocean?... Did you ever hear music up there?... It’s the music a man’s spirit sings to his heart, when the earth’s far away and there isn’t any more fear. It’s the high, fine, beautiful sound of an earth-bound creature who grew wings and flew up high and looked straight into the face of the future. And caught, just for an instant, the unbelievable vision of a free man in a free world.
    Dalton Trumbo (1905–1976)

    When we are in love, the sentiment is too great to be contained whole within us; it radiates out to our beloved, finds in her a surface which stops it, forces it to return to its point of departure, and it is this rebound of our own tenderness which we call the other’s affection and which charms us more than when it first went out because we do not see that it comes from us.
    Marcel Proust (1871–1922)