Definition
Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function u : E1 → E2 between vector spaces is entirely determined by its values on a basis of the vector space E1. Conversely, a function u : E1 → E2 defined on a basis of E1 can be uniquely extended to a linear function. The following definition translates this to any category.
Let (C,F) be a concrete category (i.e. F: C → Set is a faithful functor), let X be a set (called basis), A ∈ C an object, and i: X → F(A) a map between sets (called canonical injection). We say that A is the free object on X (with respect to i) if and only if they satisfy this universal property:
- for any object B and any map between sets f: X → F(B), there exists a unique morphism such that . That is, the following diagram commutes:
This way the free functor that builds the free object A from the set X becomes left adjoint to the forgetful functor.
Read more about this topic: Free Object
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)