Free Algebra - Contrast With Polynomials

Contrast With Polynomials

Since the words over the alphabet {X1, ...,Xn} form a basis of RX1,...,Xn⟩, it is clear that any element of RX1, ...,Xn⟩ can be uniquely written in the form:

where are elements of R and all but finitely many of these elements are zero. This explains why the elements of RX1,...,Xn⟩ are often denoted as "non-commutative polynomials" in the "variables" (or "indeterminates") X1,...,Xn; the elements are said to be "coefficients" of these polynomials, and the R-algebra RX1,...,Xn⟩ is called the "non-commutative polynomial algebra over R in n indeterminates". Note that unlike in an actual polynomial ring, the variables do not commute. For example X1X2 does not equal X2X1.

More generally, one can construct the free algebra RE⟩ on any set E of generators. Since rings may be regarded as Z-algebras, a free ring on E can be defined as the free algebra ZE⟩.

Over a field, the free algebra on n indeterminates can be constructed as the tensor algebra on an n-dimensional vector space. For a more general coefficient ring, the same construction works if we take the free module on n generators.

The construction of the free algebra on E is functorial in nature and satisfies an appropriate universal property. The free algebra functor is left adjoint to the forgetful functor from the category of R-algebras to the category of sets.

Free algebras over division rings are free ideal rings.

Read more about this topic:  Free Algebra

Famous quotes containing the word contrast:

    Unlike Boswell, whose Journals record a long and unrewarded search for a self, Johnson possessed a formidable one. His life in London—he arrived twenty-five years earlier than Boswell—turned out to be a long defense of the values of Augustan humanism against the pressures of other possibilities. In contrast to Boswell, Johnson possesses an identity not because he has gone in search of one, but because of his allegiance to a set of assumptions that he regards as objectively true.
    Jeffrey Hart (b. 1930)