The tangent frame bundle (or simply the frame bundle) of a smooth manifold M is the frame bundle associated to the tangent bundle of M. The frame bundle of M is often denoted FM or GL(M) rather than F(TM). If M is n-dimensional then the tangent bundle has rank n, so the frame bundle of M is a principal GLn(R) bundle over M.
Read more about this topic: Frame Bundle
Famous quotes containing the words frame and/or bundle:
“Painting seems to be to the eye what dancing is to the limbs. When that has educated the frame to self-possession, to nimbleness, to grace, the steps of the dancing-master are better forgotten; so painting teaches me the splendor of color and the expression of form, and as I see many pictures and higher genius in the art, I see the boundless opulence of the pencil, the indifferency in which the artist stands free to choose out of the possible forms.”
—Ralph Waldo Emerson (18031882)
“In the quilts I had found good objectshospitable, warm, with soft edges yet resistant, with boundaries yet suggesting a continuous safe expanse, a field that could be bundled, a bundle that could be unfurled, portable equipment, light, washable, long-lasting, colorful, versatile, functional and ornamental, private and universal, mine and thine.”
—Radka Donnell-Vogt, U.S. quiltmaker. As quoted in Lives and Works, by Lynn F. Miller and Sally S. Swenson (1981)