Fractional Derivative of A Basic Power Function
Let us assume that is a monomial of the form
The first derivative is as usual
Repeating this gives the more general result that
Which, after replacing the factorials with the Gamma function, leads us to
For and, we obtain the half-derivative of the function as
Repeating this process yields
which is indeed the expected result of
This extension of the above differential operator need not be constrained only to real powers. For example, the th derivative of the th derivative yields the 2nd derivative. Also notice that setting negative values for a yields integrals.
For a general function and, the complete fractional derivative is
For arbitrary, since the gamma function is undefined for arguments whose real part is a negative integer, it is necessary to apply the fractional derivative after the integer derivative has been performed. For example,
Read more about this topic: Fractional Calculus
Famous quotes containing the words fractional, derivative, basic, power and/or function:
“Hummingbird
stay for a fractional sharp
sweetness, ands gone, cant take
more than that.”
—Denise Levertov (b. 1923)
“Poor John Field!I trust he does not read this, unless he will improve by it,thinking to live by some derivative old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adams grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.”
—Henry David Thoreau (18171862)
“What, then, is the basic difference between todays computer and an intelligent being? It is that the computer can be made to see but not to perceive. What matters here is not that the computer is without consciousness but that thus far it is incapable of the spontaneous grasp of patterna capacity essential to perception and intelligence.”
—Rudolf Arnheim (b. 1904)
“Tis a sort of duty to be rich, that it may be in ones power to do good, riches being another word for power.”
—Mary Wortley, Lady Montagu (16891762)
“The function of literature, through all its mutations, has been to make us aware of the particularity of selves, and the high authority of the self in its quarrel with its society and its culture. Literature is in that sense subversive.”
—Lionel Trilling (19051975)