Left Adjoint: Free
Forgetful functors tend to have left adjoints, which are 'free' constructions. For example:
- free module: the forgetful functor from (the category of -module) to has left adjoint, with, the free -module with basis .
- free group
- free lattice
- tensor algebra
- free category, adjoint to the forgetful functor from categories to quivers
For a more extensive list, see (Mac Lane 1997).
As this is a fundamental example of adjoints, we spell it out: adjointness means that given a set X and an object (say, an R-module) M, maps of sets correspond to maps of modules : every map of sets yields a map of modules, and every map of modules comes from a map of sets.
In the case of vector spaces, this is summarized as: "A map between vector spaces is determined by where it sends a basis, and a basis can be mapped to anything."
Symbolically:
The counit of the free-forget adjunction is the "inclusion of a basis": .
Fld, the category of fields, furnishes an example of a forgetful functor with no adjoint. There is no field satisfying a free universal property for a given set.
Read more about this topic: Forgetful Functor
Famous quotes containing the words left and/or free:
“But I was trying to tell you about a strange thing
That happened to me, but this is no way to tell about it,
By making it truly happen. It drifts away in fragments.
And one is left sitting in the yard
To try to write poetry
Using what Wyatt and Surrey left around....”
—John Ashbery (b. 1927)
“A country where every citizen is free to suppress liberty.”
—George Bernard Shaw (18561950)