Forensic Engineering - Analysis

Analysis

Failure mode and effects analysis (FMEA) and fault tree analysis methods also examine product or process failure in a structured and systematic way, in the general context of safety engineering. However, all such techniques rely on accurate reporting of failure rates, and precise identification, of the failure modes involved.

There is some common ground between forensic science and forensic engineering, such as scene of crime and scene of accident analysis, integrity of the evidence and court appearances. Both disciplines make extensive use of optical and scanning electron microscopes, for example. They also share common use of spectroscopy (infrared, ultraviolet, and nuclear magnetic resonance) to examine critical evidence. Radiography using X-rays or neutrons is also very useful in examining thick products for their internal defects before destructive examination is attempted. Often, however, a simple hand lens may reveal the cause of a particular problem.

Trace evidence is sometimes an important factor in reconstructing the sequence of events in an accident. For example, tire burn marks on a road surface can enable vehicle speeds to be estimated, when the brakes were applied and so on. Ladder feet often leave a trace of movement of the ladder during a slipaway, and may show how the accident occurred. When a product fails for no obvious reason, SEM and Energy-dispersive X‑ray spectroscopy (EDX) performed in the microscope can reveal the presence of aggressive chemicals that have left traces on the fracture or adjacent surfaces. Thus an acetal resin water pipe joint suddenly failed and caused substantial damages to a building in which it was situated. Analysis of the joint showed traces of chlorine, indicating a stress corrosion cracking failure mode. The failed fuel pipe junction mentioned above showed traces of sulfur on the fracture surface from the sulfuric acid, which had initiated the crack.

Extracting physical evidence from digital photography is a major technique used in forensic accident reconstruction. Camera matching, photogrammetry, and photo rectification techniques are used to create three dimensional and top-down views from the two-dimensional photos typically taken at an accident scene. Overlooked or undocumented evidence for accident reconstruction can be retrieved and quantified as long as photographs of such evidence are available. By using photographs of the accident scene including the vehicle, "lost" evidence can be recovered and accurately determined.

Forensic materials engineering involves methods applied to specific materials, such as metals, glasses, ceramics, composites and polymers.

Read more about this topic:  Forensic Engineering

Famous quotes containing the word analysis:

    ... the big courageous acts of life are those one never hears of and only suspects from having been through like experience. It takes real courage to do battle in the unspectacular task. We always listen for the applause of our co-workers. He is courageous who plods on, unlettered and unknown.... In the last analysis it is this courage, developing between man and his limitations, that brings success.
    Alice Foote MacDougall (1867–1945)