Ford Circle - Total Area of Ford Circles

Total Area of Ford Circles

There is a link between the area of Ford circles, Euler's totient function φ, the Riemann zeta function ζ, and Apéry's constant ζ(3).

As no two Ford circles intersect, it follows immediately that the total area of the Ford circles

is less than 1. In fact the total area of these Ford circles is given by a convergent sum, which can be evaluated.

From the definition, the area is

 A = \sum_{q\ge 1} \sum_{ (p, q)=1 \atop 1 \le p < q }
\pi \left( \frac{1}{2 q^2} \right)^2.

Simplifying this expression gives

 A = \frac{\pi}{4} \sum_{q\ge 1} \frac{1}{q^4}
\sum_{ (p, q)=1 \atop 1 \le p < q } 1 =
\frac{\pi}{4} \sum_{q\ge 1} \frac{\varphi(q)}{q^4} =
\frac{\pi}{4} \frac{\zeta(3)}{\zeta(4)},

where the last equality reflects the Dirichlet generating function for Euler's totient function φ(q). Since ζ(4) = π 4/90, this finally becomes

Read more about this topic:  Ford Circle

Famous quotes containing the words total, area, ford and/or circles:

    By sharing the information and observations with the caregiver, you have a chance to see your child through another pair of eyes. Because she has some distance and objectivity, a caregiver often sees things that a parent’s total involvement with her child doesn’t allow.
    Amy Laura Dombro (20th century)

    Now for civil service reform. Legislation must be prepared and executive rules and maxims. We must limit and narrow the area of patronage. We must diminish the evils of office-seeking. We must stop interference of federal officers with elections. We must be relieved of congressional dictation as to appointments.
    Rutherford Birchard Hayes (1822–1893)

    The Declaration [of Independence] was not a protest against government, but against the excess of government. It prescribed the proper role of government, to secure the rights of individuals and to effect their safety and happiness. In modern society, no individual can do this alone. So government is not a necessary evil but a necessary good.
    —Gerald R. Ford (b. 1913)

    Before the birth of the New Woman the country was not an intellectual desert, as she is apt to suppose. There were teachers of the highest grade, and libraries, and countless circles in our towns and villages of scholarly, leisurely folk, who loved books, and music, and Nature, and lived much apart with them. The mad craze for money, which clutches at our souls to-day as la grippe does at our bodies, was hardly known then.
    Rebecca Harding Davis (1831–1910)