Forcing (mathematics) - Boolean-valued Models

Boolean-valued Models

Main article: Boolean-valued model

Perhaps more clearly, the method can be explained in terms of Boolean-valued models. In these, any statement is assigned a truth value from some complete atomless Boolean algebra, rather than just a true/false value. Then an ultrafilter is picked in this Boolean algebra, which assigns values true/false to statements of our theory. The point is that the resulting theory has a model which contains this ultrafilter, which can be understood as a new model obtained by extending the old one with this ultrafilter. By picking a Boolean-valued model in an appropriate way, we can get a model that has the desired property. In it, only statements which must be true (are "forced" to be true) will be true, in a sense (since it has this extension/minimality property).

Read more about this topic:  Forcing (mathematics)

Famous quotes containing the word models:

    Friends broaden our horizons. They serve as new models with whom we can identify. They allow us to be ourselves—and accept us that way. They enhance our self-esteem because they think we’re okay, because we matter to them. And because they matter to us—for various reasons, at various levels of intensity—they enrich the quality of our emotional life.
    Judith Viorst (20th century)