Flipped SU(5) - Superpotential

Superpotential

A generic invariant renormalizable superpotential is a (complex) invariant cubic polynomial in the superfields which has an R-charge of 2. It is a linear combination of the following terms: 
\begin{matrix}
S&S\\
S 10_H \overline{10}_H&S 10_H^{\alpha\beta} \overline{10}_{H\alpha\beta}\\
10_H 10_H H_d&\epsilon_{\alpha\beta\gamma\delta\epsilon}10_H^{\alpha\beta}10_H^{\gamma\delta} H_d^{\epsilon}\\
\overline{10}_H\overline{10}_H H_u&\epsilon^{\alpha\beta\gamma\delta\epsilon}\overline{10}_{H\alpha\beta}\overline{10}_{H\gamma\delta}H_{u\epsilon}\\
H_d 10 10&\epsilon_{\alpha\beta\gamma\delta\epsilon}H_d^{\alpha}10_i^{\beta\gamma}10_j^{\delta\epsilon}\\
H_d \bar{5} 1 &H_d^\alpha \bar{5}_{i\alpha} 1_j\\
H_u 10 \bar{5}&H_{u\alpha} 10_i^{\alpha\beta} \bar{5}_{j\beta}\\
\overline{10}_H 10 \phi&\overline{10}_{H\alpha\beta} 10_i^{\alpha\beta} \phi_j\\
\end{matrix}

The second column expands each term in index notation (neglecting the proper normalization coefficient). i and j are the generation indices. The coupling Hd 10i 10j has coefficients which are symmetric in i and j.

In those models without the optional φ sterile neutrinos, we add the nonrenormalizable couplings instead.


\begin{matrix}
(\overline{10}_H 10)(\overline{10}_H 10)&\overline{10}_{H\alpha\beta}10^{\alpha\beta}_i \overline{10}_{H\gamma\delta} 10^{\gamma\delta}_j\\
\overline{10}_H 10 \overline{10}_H 10&\overline{10}_{H\alpha\beta}10^{\beta\gamma}_i\overline{10}_{H\gamma\delta}10^{\delta\alpha}_j
\end{matrix}

These couplings do break the R-symmetry.

Read more about this topic:  Flipped SU(5)