Quantum Chromodynamics
- Flavour symmetry is closely related to chiral symmetry. This part of the article is best read along with the one on chirality.
Quantum chromodynamics (QCD) contains six flavours of quarks. However, their masses differ and as a result they are not strictly interchangeable with each other. The up and down flavours are close to having equal masses, and the theory of these two quarks possesses an approximate SU(2) symmetry (isospin symmetry).
Under some circumstances, the masses of the quarks can be neglected entirely. One can then make flavour transformations independently on the left- and right-handed parts of each quark field. The flavour group is then a chiral group SUL(Nf) × SUR(Nf).
If all quarks had non-zero but equal masses, then this chiral symmetry is broken to the vector symmetry of the "diagonal flavour group"—SU(Nf), which applies the same transformation to both helicities of the quarks. Such a reduction of the symmetry is called explicit symmetry breaking. The amount of explicit symmetry breaking is controlled by the current quark masses in QCD.
Even if quarks are massless, chiral flavour symmetry can be spontaneously broken if the vacuum of the theory contains a chiral condensate (as it does in low-energy QCD). This gives rise to an effective mass for the quarks, often identified with the valence quark mass in QCD.
Read more about this topic: Flavour Quantum Numbers
Famous quotes containing the word quantum:
“A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.”
—Hubert C. Heffner (19011985)