Categorical Colimits
In general, arbitrary direct sums and direct limits of flat modules are flat, a consequence of the fact that the tensor product commutes with direct sums and direct limits (in fact with all colimits), and that both direct sums and direct limits are exact functors. Submodules and factor modules of flat modules need not be flat in general. However we have the following result: the homomorphic image of a flat module M is flat if and only if the kernel is a pure submodule of M.
Daniel Lazard proved in 1969 that a module M is flat if and only if it is a direct limit of finitely-generated free modules. As a consequence, one can deduce that every finitely-presented flat module is projective.
An abelian group is flat (viewed as a Z-module) if and only if it is torsion-free.
Read more about this topic: Flat Module
Famous quotes containing the word categorical:
“We do the same thing to parents that we do to children. We insist that they are some kind of categorical abstraction because they produced a child. They were people before that, and theyre still people in all other areas of their lives. But when it comes to the state of parenthood they are abruptly heir to a whole collection of virtues and feelings that are assigned to them with a fine arbitrary disregard for individuality.”
—Leontine Young (20th century)