Equilibrium Flash of A Multi-component Liquid
The equilibrium flash of a multi-component liquid may be visualized as a simple distillation process using a single equilibrium stage. It is very different and more complex than the flash evaporation of single-component liquid. For a multi-component liquid, calculating the amounts of flashed vapor and residual liquid in equilibrium with each other at a given temperature and pressure requires a trial-and-error iterative solution. Such a calculation is commonly referred to as an equilibrium flash calculation. It involves solving the Rachford-Rice equation:
where:
- zi is the mole fraction of component i in the feed liquid (assumed to be known);
- β is the fraction of feed that is vaporised;
- Ki is the equilibrium constant of component i.
The equilibrium constants Ki are in general functions of many parameters, though the most important is arguably temperature; they are defined as:
where:
- xi is the mole fraction of component i in liquid phase;
- yi is the mole fraction of component i in gas phase.
Once the Rachford-Rice equation has been solved for β, the compositions xi and yi can be immediately calculated as:
The Rachford-Rice equation can have multiple solutions for β, at most one of which guarantees that all xi and yi will be positive. In particular, if there is only one β for which:
then that β is the solution; if there are multiple such β's, it means that either Kmax<1 or Kmin>1, indicating respectively that no gas phase can be sustained (and therefore β=0) or conversely that no liquid phase can exist (and therefore β=1).
It is possible to use Newton's method for solving the above water equation, but there is a risk of converging to the wrong value of β; it is important to initialise the solver to a sensible initial value, such as (βmax+βmin)/2 (which is however not sufficient: Newton's method makes no guarantees on stability), or, alternatively, use a bracketing solver such as the bisection method or the Brent method, which are guaranteed to converge but can be slower.
The equilibrium flash of multi-component liquids is very widely utilized in petroleum refineries, petrochemical and chemical plants and natural gas processing plants.
Read more about this topic: Flash Evaporation
Famous quotes containing the words equilibrium, flash and/or liquid:
“That doctrine [of peace at any price] has done more mischief than any I can well recall that have been afloat in this country. It has occasioned more wars than any of the most ruthless conquerors. It has disturbed and nearly destroyed that political equilibrium so necessary to the liberties and the welfare of the world.”
—Benjamin Disraeli (18041881)
“The point of the dragonflys terrible lip, the giant water bug, birdsong, or the beautiful dazzle and flash of sunlighted minnows, is not that it all fits together like clockwork--for it doesnt ... but that it all flows so freely wild, like the creek, that it all surges in such a free, finged tangle. Freedom is the worlds water and weather, the worlds nourishment freely given, its soil and sap: and the creator loves pizzazz.”
—Annie Dillard (b. 1945)
“Tomorrow night, when Phoebe doth behold
Her silver visage in the watery glass,
Decking with liquid pearl the bladed grass.”
—William Shakespeare (15641616)