Flag (linear Algebra)
In mathematics, particularly in linear algebra, a flag is an increasing sequence of subspaces of a finite-dimensional vector space V. Here "increasing" means each is a proper subspace of the next (see filtration):
If we write the dim Vi = di then we have
where n is the dimension of V (assumed to be finite-dimensional). Hence, we must have k ≤ n. A flag is called a complete flag if di = i, otherwise it is called a partial flag.
A partial flag can be obtained from a complete flag by deleting some of the subspaces. Conversely, any partial flag can be completed (in many different ways) by inserting suitable subspaces.
The signature of the flag is the sequence (d1, … dk).
Read more about Flag (linear Algebra): Bases, Stabilizer, Subspace Nest, Set-theoretic Analogs
Famous quotes containing the word flag:
“Theres an enduring American compulsion to be on the side of the angels. Expediency alone has never been an adequate American reason for doing anything. When actions are judged, they go before the bar of God, where Mom and the Flag closely flank His presence.”
—Jonathan Raban (b. 1942)