Fitness proportionate selection, also known as roulette-wheel selection, is a genetic operator used in genetic algorithms for selecting potentially useful solutions for recombination.
In fitness proportionate selection, as in all selection methods, the fitness function assigns a fitness to possible solutions or chromosomes. This fitness level is used to associate a probability of selection with each individual chromosome. If is the fitness of individual in the population, its probability of being selected is, where is the number of individuals in the population.
This could be imagined similar to a Roulette wheel in a casino. Usually a proportion of the wheel is assigned to each of the possible selections based on their fitness value. This could be achieved by dividing the fitness of a selection by the total fitness of all the selections, thereby normalizing them to 1. Then a random selection is made similar to how the roulette wheel is rotated.
While candidate solutions with a higher fitness will be less likely to be eliminated, there is still a chance that they may be. Contrast this with a less sophisticated selection algorithm, such as truncation selection, which will eliminate a fixed percentage of the weakest candidates. With fitness proportionate selection there is a chance some weaker solutions may survive the selection process; this is an advantage, as though a solution may be weak, it may include some component which could prove useful following the recombination process.
The analogy to a roulette wheel can be envisaged by imagining a roulette wheel in which each candidate solution represents a pocket on the wheel; the size of the pockets are proportionate to the probability of selection of the solution. Selecting N chromosomes from the population is equivalent to playing N games on the roulette wheel, as each candidate is drawn independently.
Other selection techniques, such as stochastic universal sampling or tournament selection, are often used in practice. This is because they have less stochastic noise, or are fast, easy to implement and have a constant selection pressure .
Note performance gains can be achieved by using a binary search rather than a linear search to find the right pocket.
Read more about Fitness Proportionate Selection: See Also
Famous quotes containing the words fitness and/or selection:
“Parentage is a very important profession; but no test of fitness for it is ever imposed in the interest of children.”
—George Bernard Shaw (18561950)
“When you consider the radiance, that it does not withhold
itself but pours its abundance without selection into every
nook and cranny”
—Archie Randolph Ammons (b. 1926)