Fisher Transformation - Definition

Definition

The transformation is defined by:

where "ln" is the natural logarithm function and "artanh" is the inverse hyperbolic function.

If (X, Y) has a bivariate normal distribution, and if the (Xi, Yi) pairs used to form r are independent for i = 1, ..., n, then z is approximately normally distributed with mean

and standard error

where N is the sample size.

This transformation, and its inverse,

can be used to construct a confidence interval for ρ.

Read more about this topic:  Fisher Transformation

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)