First Law of Thermodynamics - Various Statements of The Law For Closed Systems

Various Statements of The Law For Closed Systems

The law is of very great importance and generality and is consequently thought of from several points of view. Most careful textbook statements of the law express it for closed systems. It is stated in several ways, sometimes even by the same author.

For the thermodynamics of closed systems, the distinction between transfers of energy as work and as heat is central and is within the scope of the present article. For the thermodynamics of open systems, such a distinction is beyond the scope of the present article, but some limited comments are made on it in the section below headed 'First law of thermodynamics for open systems'.

There are two main ways of stating a law of thermodynamics, physically or mathematically. They should be logically coherent and consistent with one another.

An example of a physical statement is that of Planck (1897/1903):

It is in no way possible, either by mechanical, thermal, chemical, or other devices, to obtain perpetual motion, i.e. it is impossible to construct an engine which will work in a cycle and produce continuous work, or kinetic energy, from nothing."

This physical statement is restricted neither to closed systems nor to systems with states that are strictly defined only for thermodynamic equilibrium; it has meaning also for open systems and for systems with states that are not in thermodynamic equilibrium.

An example of a mathematical statement is that of Crawford (1963):

For a given system we let ΔE kin = large-scale mechanical energy, ΔE pot = large-scale potential energy, and ΔE tot = total energy. The first two quantities are specifiable in terms of appropriate mechanical variables, and by definition
For any finite process, whether reversible or irreversible,
The first law in a form that involves the principle of conservation of energy more generally is
Here Q and W are heat and work added, with no restrictions as to whether the process is reversible, quasistatic, or irreversible.

This statement by Crawford, for W, uses the sign convention of IUPAC, not that of Clausius. Though it does not explicitly say so, this statement refers to closed systems, and to internal energy U defined for bodies in states of thermodynamic equilibrium, which possess well-defined temperatures.

The history of statements of the law for closed systems has two main periods, before and after the work of Bryan (1907), of Carathéodory (1909), and the approval of Carathéodory's work given by Born (1921). The earlier traditional versions of the law for closed systems are nowadays often considered to be out of date.

Carathéodory's celebrated presentation of equilibrium thermodynamics refers to closed systems, which are allowed to contain several phases connected by internal walls of various kinds of impermeability and permeability, explicitly including walls that are permeable only to heat. Carathéodory's version of the first law of thermodynamics was stated in an axiom which refrained from defining or mentioning temperature or quantity of heat transferred. That axiom stated that the internal energy of a phase in equilibrium is a function of state, that the sum of the internal energies of the phases is the total internal energy of the system, and that the value of the total internal energy of the system is changed by the amount of work done adiabatically on it, considering work as a form of energy. That article considered this statement to be an expression of the law of conservation of energy for such systems. This version is nowadays widely accepted as authoritative, but is stated in slightly varied ways by different authors. The Carathéodory statement of the law in axiomatic form does not mention heat or temperature, but the equilibrium states to which it refers are explicitly defined by variable sets that necessarily include "non-deformation variables", such as pressures, which, within reasonable restrictions, can be rightly interpreted as empirical temperatures, and the walls connecting the phases of the system are explicitly defined as possibly impermeable to heat or permeable only to heat. According to Münster (1970), "A somewhat unsatisfactory aspect of Carathéodory's theory is that a consequence of the Second Law must be considered at this point, i.e. that it is not always possible to reach any state 2 from any other state 1 by means of an adiabatic process." Münster instances that no adiabatic process can reduce the internal energy of a system at constant volume. Carathéodory's paper asserts that its statement of the first law corresponds exactly to Joule's experimental arrangement, regarded as an instance of adiabatic work. It does not point out that Joule's experimental arrangement performed essentially irreversible work, through friction of paddles in a liquid, or passage of electric current through a resistance inside the system, driven by motion of a coil and inductive heating, or by an external current source, which can access the system only by the passage of electrons, and so is not strictly adiabatic, because electrons are a form of matter, which cannot penetrate adiabatic walls. The paper goes on to base its main argument on the possibility of quasi-static adiabatic work, which is essentially reversible. The paper asserts that it will avoid reference to Carnot cycles, and then proceeds to base its argument on cycles of forward and backward quasi-static adiabatic stages, with isothermal stages of zero magnitude.

Some respected modern statements of the first law for closed systems assert the existence of internal energy as a function of state defined in terms of adiabatic work and accept the Carathéodory idea that heat is not defined in its own right, that is to say calorimetrically or as due to temperature difference; they define heat as a residual difference between change of internal energy and work done on the system, when that work does not account for the whole of the change of internal energy and the system is not adiabatically isolated.

Sometimes the concept of internal energy is not made explicit in the statement.

Sometimes the existence of the internal energy is made explicit but work is not explicitly mentioned in the statement of the first postulate of thermodynamics. Heat supplied is then defined as the residual change in internal energy after work has been taken into account, in a non-adiabatic process.

A respected modern author states the first law of thermodynamics as "Heat is a form of energy", which explicitly mentions neither internal energy nor adiabatic work. Heat is defined as energy transferred by thermal contact with a reservoir, which has a temperature, and is generally so large that addition and removal of heat do not alter its temperature. A current student text on chemistry defines heat thus: "heat is the exchange of thermal energy between a system and its surroundings caused by a temperature difference." The author then explains how heat is defined or measured by calorimetry, in terms of heat capacity, specific heat capacity, molar heat capacity, and temperature.

A respected text disregards the Carathéodory's exclusion of mention of heat from the statement of the first law for closed systems, and admits heat calorimetrically defined along with work and internal energy. Another respected text defines heat exchange as determined by temperature difference, but also mentions that the Born (1921) version is "completely rigorous". These versions follow the traditional approach that is now considered out of date, exemplified by that of Planck (1897/1903).

Read more about this topic:  First Law Of Thermodynamics

Famous quotes containing the words statements, law, closed and/or systems:

    There was books too.... One was “Pilgrim’s Progress,” about a man that left his family it didn’t say why. I read considerable in it now and then. The statements was interesting, but tough.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    The due process of law as we use it, I believe, rests squarely on the liberal idea of conflict and resolution.
    June L. Trapp (b. 1930)

    On a flat road runs the well-trained runner,
    He is lean and sinewy with muscular legs,
    He is thinly clothed, he leans forward as he runs,
    With lightly closed fists and arms partially raised.
    Walt Whitman (1819–1892)

    The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Gray’s Anatomy.
    —J.G. (James Graham)