First-order Logic - Equality and Its Axioms

Equality and Its Axioms

There are several different conventions for using equality (or identity) in first-order logic. The most common convention, known as first-order logic with equality, includes the equality symbol as a primitive logical symbol which is always interpreted as the real equality relation between members of the domain of discourse, such that the "two" given members are the same member. This approach also adds certain axioms about equality to the deductive system employed. These equality axioms are:

  1. Reflexivity. For each variable x, x = x.
  2. Substitution for functions. For all variables x and y, and any function symbol f,
    x = yf(...,x,...) = f(...,y,...).
  3. Substitution for formulas. For any variables x and y and any formula φ(x), if φ' is obtained by replacing any number of free occurrences of x in φ with y, such that these remain free occurrences of y, then
    x = y → (φ → φ').

These are axiom schemes, each of which specifies an infinite set of axioms. The third scheme is known as Leibniz's law, "the principle of substitutivity", "the indiscernibility of identicals", or "the replacement property". The second scheme, involving the function symbol f, is (equivalent to) a special case of the third scheme, using the formula

x = y → (f(...,x,...) = z → f(...,y,...) = z).

Many other properties of equality are consequences of the axioms above, for example:

  1. Symmetry. If x = y then y = x.
  2. Transitivity. If x = y and y = z then x = z.

Read more about this topic:  First-order Logic

Famous quotes containing the words equality and/or axioms:

    I do not find fault with equality for drawing men into the pursuit of forbidden pleasures, but for absorbing them entirely in the search for the pleasures that are permitted.
    Alexis de Tocqueville (1805–1859)

    “I tell you the solemn truth that the doctrine of the Trinity is not so difficult to accept for a working proposition as any one of the axioms of physics.”
    Henry Brooks Adams (1838–1918)