First-countable Space

In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space X is said to be first-countable if each point has a countable neighbourhood basis (local base). That is, for each point x in X there exists a sequence U1, U2, … of open neighbourhoods of x such that for any open neighbourhood V of x there exists an integer i with Ui contained in V.

Read more about First-countable Space:  Examples and Counterexamples, Properties

Famous quotes containing the word space:

    If we remembered everything, we should on most occasions be as ill off as if we remembered nothing. It would take us as long to recall a space of time as it took the original time to elapse, and we should never get ahead with our thinking. All recollected times undergo, accordingly, what M. Ribot calls foreshortening; and this foreshortening is due to the omission of an enormous number of facts which filled them.
    William James (1842–1910)