Finitely-generated Module - Formal Definition

Formal Definition

The left R-module M is finitely generated if and only if there exist a1, a2, ..., an in M such that for all x in M, there exist r1, r2, ..., rn in R with x = r1a1 + r2a2 + ... + rnan.

The set {a1, a2, ..., an} is referred to as a generating set for M in this case.

In the case where the module M is a vector space over a field R, and the generating set is linearly independent, n is well-defined and is referred to as the dimension of M (well-defined means that any linearly independent generating set has n elements: this is the dimension theorem for vector spaces).

Read more about this topic:  Finitely-generated Module

Famous quotes containing the words formal and/or definition:

    I will not let him stir
    Till I have used the approvèd means I have,
    With wholesome syrups, drugs, and holy prayers,
    To make of him a formal man again.
    William Shakespeare (1564–1616)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)