Formal Definition
The left R-module M is finitely generated if and only if there exist a1, a2, ..., an in M such that for all x in M, there exist r1, r2, ..., rn in R with x = r1a1 + r2a2 + ... + rnan.
The set {a1, a2, ..., an} is referred to as a generating set for M in this case.
In the case where the module M is a vector space over a field R, and the generating set is linearly independent, n is well-defined and is referred to as the dimension of M (well-defined means that any linearly independent generating set has n elements: this is the dimension theorem for vector spaces).
Read more about this topic: Finitely-generated Module
Famous quotes containing the words formal and/or definition:
“Then the justice,
In fair round belly with good capon lined,
With eyes severe and beard of formal cut,
Full of wise saws and modern instances;
And so he plays his part.”
—William Shakespeare (15641616)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)