Finitely Generated Modules Over A Commutative Ring
For finitely generated modules over a commutative ring R, Nakayama's lemma is fundamental. Sometimes, the lemma allows one to prove finite dimensional vector spaces phenomena for finitely generated modules. For example, if is a surjective R-endomorphism of a finitely generated module M, then f is also injective, and hence is an automorphism of M. This says simply that M is a Hopfian module. Similarly, an Artinian module M is coHopfian: any injective endomorphism f is also a surjective endomorphism.
Any R-module is an inductive limit of finitely generated R-submodules. This is useful for weakening an assumption to the finite case (e.g., the characterization of flatness with the Tor functor.)
An example of a link between finite generation and integral elements can be found in commutative algebras. To say that a commutative algebra A is a finitely generated ring over R means that there exists a set of elements G={x1...xn} of A such that the smallest subring of A containing G and R is A itself. Because the ring product may be used to combine elements, more than just R combinations of elements of G are generated. For example, a polynomial ring R is finitely generated by {1,x} as a ring, but not as a module. If A is a commutative algebra (with unity) over R, then the following two statements are equivalent:
- A is a finitely generated R module.
- A is both a finitely generated ring over R and an integral extension of R.
Read more about this topic: Finitely-generated Module
Famous quotes containing the words generated and/or ring:
“Here [in London, history] ... seemed the very fabric of things, as if the city were a single growth of stone and brick, uncounted strata of message and meaning, age upon age, generated over the centuries to the dictates of some now all-but-unreadable DNA of commerce and empire.”
—William Gibson (b. 1948)
“I saw Eternity the other night,
Like a great ring of pure and endless light,”
—Henry Vaughan (16221695)