Examples
- Let R be an integral domain with K its field of fractions. Then every R-submodule of K is a fractional ideal. If R is Noetherian, every fractional ideal arises in this way.
- Finitely generated modules over the ring of integers Z coincide with the finitely generated abelian groups. These are completely classified by the structure theorem, taking Z as the principal ideal domain.
- Finitely generated modules over division rings are precisely finite dimensional vector spaces.
Read more about this topic: Finitely-generated Module
Famous quotes containing the word examples:
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)