Finite Intersection Property - Discussion

Discussion

Clearly the empty set cannot belong to any collection with the f.i.p. The condition is trivially satisfied if the intersection over the entire collection is nonempty (in particular, if the collection itself is empty), and it is also trivially satisfied if the collection is nested, meaning that the collection is totally ordered by inclusion (equivalently, for any finite subcollection, a particular element of the subcollection is contained in all the other elements of the subcollection), e.g. the nested sequence of intervals

(0, 1/n).

These are not the only possibilities however. For example, if X = (0, 1) and for each positive integer i, Xi is the set of elements of X having a decimal expansion with digit 0 in the i'th decimal place, then any finite intersection is nonempty (just take 0 in those finitely many places and 1 in the rest), but the intersection of all Xi for i≥1 is empty, since no element of (0, 1) has all zero digits.

The finite intersection property is useful in formulating an alternative definition of compactness: a space is compact if and only if every collection of closed sets satisfying the finite intersection property has nonempty intersection itself. This formulation of compactness is used in some proofs of Tychonoff's theorem and the uncountability of the real numbers (see next section)

Read more about this topic:  Finite Intersection Property

Famous quotes containing the word discussion:

    The whole land seems aroused to discussion on the province of woman, and I am glad of it. We are willing to bear the brunt of the storm, if we can only be the means of making a break in that wall of public opinion which lies right in the way of woman’s rights, true dignity, honor and usefulness.
    Angelina Grimké (1805–1879)

    There are answers which, in turning away wrath, only send it to the other end of the room, and to have a discussion coolly waived when you feel that justice is all on your own side is even more exasperating in marriage than in philosophy.
    George Eliot [Mary Ann (or Marian)

    This is certainly not the place for a discourse about what festivals are for. Discussions on this theme were plentiful during that phase of preparation and on the whole were fruitless. My experience is that discussion is fruitless. What sets forth and demonstrates is the sight of events in action, is living through these events and understanding them.
    Doris Lessing (b. 1919)