Applications
Theorem
Let X be a compact Hausdorff space that satisfies the property that no one-point set is open. If X has more than one point, then X is uncountable.
Before proving this, we give some examples:
1. We cannot eliminate the Hausdorff condition; a countable set with the indiscrete topology is compact, has more than one point, and satisfies the property that no one point sets are open, but is not uncountable.
2. We cannot eliminate the compactness condition as the set of all rational numbers shows.
3. We cannot eliminate the condition that one point sets cannot be open as a finite space given the discrete topology shows.
Proof of theorem:
Let X be a compact Hausdorff space. We will show that if U is a nonempty, open subset of X and if x is a point of X, then there is a neighbourhood V contained in U whose closure doesn’t contain x (x may or may not be in U). First of all, choose y in U different from x (if x is in U, then there must exist such a y for otherwise U would be an open one point set; if x isn’t in U, this is possible since U is nonempty). Then by the Hausdorff condition, choose disjoint neighbourhoods W and K of x and y respectively. Then (K ∩ U) will be a neighbourhood of y contained in U whose closure doesn’t contain x as desired.
Now suppose ƒ is a bijective function from Z (the positive integers) to X. Denote the points of the image of Z under ƒ as {x1, x2, ……}. Let X be the first open set and choose a neighbourhood U1 contained in X whose closure doesn’t contain x1. Secondly, choose a neighbourhood U2 contained in U1 whose closure doesn’t contain x2. Continue this process whereby choosing a neighbourhood Un+1 contained in Un whose closure doesn’t contain xn+1. Note that the collection {Ui} for i in the positive integers satisfies the finite intersection property and hence the intersection of their closures is nonempty (by the compactness of X). Therefore there is a point x in this intersection. No xi can belong to this intersection because xi doesn’t belong to the closure of Ui. This means that x is not equal to xi for all i and ƒ is not surjective; a contradiction. Therefore, X is uncountable.
Corollary
Every closed interval (a < b) is uncountable. Therefore, the set of real numbers is uncountable.
Corollary
Every locally compact Hausdorff space that is also perfect is uncountable.
Proof
Suppose X is a locally compact Hausdorff space that is perfect and compact. Then it immediately follows that X is uncountable (from the theorem). If X is a locally compact Hausdorff, perfect space that is not compact, then the one-point compactification of X is a compact Hausdorff space that is also perfect. It follows that the one point compactification of X is uncountable. Therefore X is uncountable (deleting a point from an uncountable set still retains the uncountability of that set).
Read more about this topic: Finite Intersection Property