Finite Difference - Finite Difference Methods

Finite Difference Methods

An important application of finite differences is in numerical analysis, especially in numerical differential equations, which aim at the numerical solution of ordinary and partial differential equations respectively. The idea is to replace the derivatives appearing in the differential equation by finite differences that approximate them. The resulting methods are called finite difference methods.

Common applications of the finite difference method are in computational science and engineering disciplines, such as thermal engineering, fluid mechanics, etc.

Read more about this topic:  Finite Difference

Famous quotes containing the words finite, difference and/or methods:

    Put shortly, these are the two views, then. One, that man is intrinsically good, spoilt by circumstance; and the other that he is intrinsically limited, but disciplined by order and tradition to something fairly decent. To the one party man’s nature is like a well, to the other like a bucket. The view which regards him like a well, a reservoir full of possibilities, I call the romantic; the one which regards him as a very finite and fixed creature, I call the classical.
    Thomas Ernest Hulme (1883–1917)

    The difference between the actual and the ideal force of man is happily figured in by the schoolmen, in saying, that the knowledge of man is an evening knowledge, vespertina cognitio, but that of God is a morning knowledge, matutina cognitio.
    Ralph Waldo Emerson (1803–1882)

    The reading public is intellectually adolescent at best, and it is obvious that what is called “significant literature” will only be sold to this public by exactly the same methods as are used to sell it toothpaste, cathartics and automobiles.
    Raymond Chandler (1888–1959)