Numerological Explanations
As a dimensionless constant which does not seem to be directly related to any mathematical constant, the fine-structure constant has long fascinated physicists. Richard Feynman, one of the originators and early developers of the theory of quantum electrodynamics (QED), referred to the fine-structure constant in these terms:
“ | There is a most profound and beautiful question associated with the observed coupling constant, e - the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of God" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly! | ” |
—Richard P. Feynman (1985). QED: The Strange Theory of Light and Matter. Princeton University Press. p. 129. ISBN 0-691-08388-6 |
Regarding the occurrence of numerological explanations I. J. Good maintains:
“ | There have been a few examples of numerology that have led to theories that transformed society: see the mention of Kirchhoff and Balmer in Good (1962, p. 316) ... and one can well include Kepler on account of his third law. It would be fair enough to say that numerology was the origin of the theories of electromagnetism, quantum mechanics, gravitation.... So I intend no disparagement when I describe a formula as numerological.
When a numerological formula is proposed, then we may ask whether it is correct. ... I think an appropriate definition of correctness is that the formula has a good explanation, in a Platonic sense, that is, the explanation could be based on a good theory that is not yet known but ‘exists’ in the universe of possible reasonable ideas. |
” |
—I. J. Good (1990). "A Quantal Hypothesis for Hadrons and the Judging of Physical Numerology." in G. R. Grimmett (Editor), D. J. A. Welsh (Editor). Disorder in Physical Systems. Oxford University Press. p. 141. ISBN 978-0198532156 |
Arthur Eddington argued that the value could be "obtained by pure deduction" and he related it to the Eddington number, his estimate of the number of protons in the Universe. This led him in 1929 to conjecture that its reciprocal was precisely the integer 137. Other physicists neither adopted this conjecture nor accepted his arguments but by the 1940s experimental values for 1/α deviated sufficiently from 137 to refute Eddington's argument. Attempts to find a mathematical basis for this dimensionless constant have continued up to the present time. For example, the mathematician James Gilson suggested (earliest archive.org entry dated December 2006 ), that the fine-structure constant has the value:
29 and 137 being the 10th and 33rd prime numbers. In 2007, the difference between the CODATA value for α and this theoretical value was about 3×10−11, about 6 times the standard error for the measured value, but as of 2010 CODATA correction the difference became much greater.
Read more about this topic: Fine-structure Constant
Famous quotes containing the word explanations:
“Financiers are great mythomaniacs, their explanations and superstitions are those of primitive men; the world is a jungle to them. They perceive acutely that they are at the dawn of economic history.”
—Christina Stead (19021983)