Ellipsoid of Revolution
Since the Earth is flattened at the poles and bulging at the equator, the geometrical figure used in geodesy to most nearly approximate Earth's shape is an oblate spheroid. An oblate spheroid, or oblate ellipsoid, is an ellipsoid of revolution obtained by rotating an ellipse about its shorter axis. A spheroid describing the figure of the Earth or other celestial body is called a reference ellipsoid. The reference ellipsoid for the Earth is called Earth ellipsoid.
An ellipsoid of revolution is uniquely defined by two numbers-- two dimensions, or one dimension and a number representing the difference between the two dimensions. Geodesists, by convention, use the semimajor axis and flattening. The size is represented by the radius at the equator—the semimajor axis of the cross-sectional ellipse—and designated by the letter . The shape of the ellipsoid is given by the flattening, which indicates how much the ellipsoid departs from spherical. (In practice, the two defining numbers are usually the equatorial radius and the reciprocal of the flattening, rather than the flattening itself; for the WGS84 spheroid used by today's GPS systems, the reciprocal of the flattening is set at 298.257223563 exactly.)
The difference between a sphere and a reference ellipsoid for Earth is small, only about one part in 300. Historically flattening was computed from grade measurements. Nowadays geodetic networks and satellite geodesy are used. In practice, many reference ellipsoids have been developed over the centuries from different surveys. The flattening value varies slightly from one reference ellipsoid to another, reflecting local conditions and whether the reference ellipsoid is intended to model the entire earth or only some portion of it.
A sphere has a single radius of curvature, which is simply the radius of the sphere. More complex surfaces have radii of curvature that vary over the surface. The radius of curvature describes the radius of the sphere that best approximates the surface at that point. Oblate ellipsoids have constant radius of curvature east to west along parallels, if a graticule is drawn on the surface, but varying curvature in any other direction. For an oblate ellipsoid, the polar radius of curvature is larger than the equatorial
because the pole is flattened: the flatter the surface, the larger the sphere must be to approximate it. Conversely, the ellipsoid's north-south radius of curvature at the equator is smaller than the polar
Read more about this topic: Figure Of The Earth
Famous quotes containing the word revolution:
“Rugged, mountainous, volcanic, he was himself more a French revolution than any of his volumes.”
—Walt Whitman (18191892)