Description
A simple parametric representation of the figure-eight knot is as the set of all points (x,y,z) where
for t varying over the real numbers (see 2D visual realization at bottom right).
The figure-eight knot is prime, alternating, rational with an associated value of 5/2, and is achiral. The figure-eight knot is also a fibered knot. This follows from other, less simple (but very interesting) representations of the knot:
(1) It is a homogeneous closed braid (namely, the closure of the 3-string braid σ1σ2-1σ1σ2-1), and a theorem of John Stallings shows that any closed homogeneous braid is fibered.
(2) It is the link at (0,0,0,0) of an isolated critical point of a real-polynomial map F: R4→R2, so (according to a theorem of John Milnor) the Milnor map of F is actually a fibration. Bernard Perron found the first such F for this knot, namely,
where
Read more about this topic: Figure-eight Knot (mathematics)
Famous quotes containing the word description:
“Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.”
—Paul Tillich (18861965)
“To give an accurate description of what has never occurred is not merely the proper occupation of the historian, but the inalienable privilege of any man of parts and culture.”
—Oscar Wilde (18541900)
“Do not require a description of the countries towards which you sail. The description does not describe them to you, and to- morrow you arrive there, and know them by inhabiting them.”
—Ralph Waldo Emerson (18031882)