Field Theory (mathematics) - Extensions of A Field

Extensions of A Field

An extension of a field k is just a field K containing k as a subfield. One distinguishes between extensions having various qualities. For example, an extension K of a field k is called algebraic, if every element of K is a root of some polynomial with coefficients in k. Otherwise, the extension is called transcendental.

The aim of Galois theory is the study of algebraic extensions of a field.

Read more about this topic:  Field Theory (mathematics)

Famous quotes containing the words extensions of, extensions and/or field:

    If we focus exclusively on teaching our children to read, write, spell, and count in their first years of life, we turn our homes into extensions of school and turn bringing up a child into an exercise in curriculum development. We should be parents first and teachers of academic skills second.
    Neil Kurshan (20th century)

    The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we don’t like what we see, we feel angry at the reflection.
    Elaine Heffner (20th century)

    Is not the tremendous strength in men of the impulse to creative work in every field precisely due to their feeling of playing a relatively small part in the creation of living beings, which constantly impels them to an overcompensation in achievement?
    Karen Horney (1885–1952)