Closures of A Field
Given a field k, various kinds of closures of k may be introduced. For example, the algebraic closure, the separable closure, the cyclic closure et cetera. The idea is always the same: If P is a property of fields, then a P-closure of k is a field K containing k, having property P, and which is minimal in the sense that no proper subfield of K that contains k has property P. For example if we take P(K) to be the property "every nonconstant polynomial f in K has a root in K", then a P-closure of k is just an algebraic closure of k. In general, if P-closures exist for some property P and field k, they are all isomorphic. However, there is in general no preferable isomorphism between two closures.
Read more about this topic: Field Theory (mathematics)
Famous quotes containing the word field:
“Beat! beat! drums!blow! bugles! blow!
Through the windowsthrough doorsburst like a ruthless force,
Into the solemn church, and scatter the congregation;
Into the school where the scholar is studying;
Leave not the bridegroom quietno happiness must he have now with his bride;
Nor the peaceful farmer any peace, plough his field or gathering his
grain;
So fierce you whirr and pound, you drumsso shrill you bugles blow.”
—Walt Whitman (18191892)