Definition and Illustration
Algebraic structures |
---|
Group-like structures
Semigroup and Monoid Quasigroup and Loop Abelian group |
Ring-like structures
Semiring Near-ring Ring Commutative ring Integral domain Field |
Lattice-like structures
Semilattice Lattice Map of lattices |
Module-like structures
Group with operators Module Vector space |
Algebra-like structures
Algebra Associative algebra Non-associative algebra Graded algebra Bialgebra |
Intuitively, a field is a set F that is a commutative group with respect to two compatible operations, addition and multiplication, with "compatible" being formalized by distributivity, and the caveat that the additive identity (0) has no multiplicative inverse (one cannot divide by 0).
The most common way to formalize this is by defining a field as a set together with two operations, usually called addition and multiplication, and denoted by + and ·, respectively, such that the following axioms hold; subtraction and division are defined implicitly in terms of the inverse operations of addition and multiplication:
- Closure of F under addition and multiplication
- For all a, b in F, both a + b and a · b are in F (or more formally, + and · are binary operations on F).
- Associativity of addition and multiplication
- For all a, b, and c in F, the following equalities hold: a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c.
- Commutativity of addition and multiplication
- For all a and b in F, the following equalities hold: a + b = b + a and a · b = b · a.
- Existence of additive and multiplicative identity elements
- There exists an element of F, called the additive identity element and denoted by 0, such that for all a in F, a + 0 = a. Likewise, there is an element, called the multiplicative identity element and denoted by 1, such that for all a in F, a · 1 = a. To exclude the trivial ring, the additive identity and the multiplicative identity are required to be distinct.
- Existence of additive inverses and multiplicative inverses
- For every a in F, there exists an element −a in F, such that a + (−a) = 0. Similarly, for any a in F other than 0, there exists an element a−1 in F, such that a · a−1 = 1. (The elements a + (−b) and a · b−1 are also denoted a − b and a/b, respectively.) In other words, subtraction and division operations exist.
- Distributivity of multiplication over addition
- For all a, b and c in F, the following equality holds: a · (b + c) = (a · b) + (a · c).
A field is therefore an algebraic structure 〈F, +, ·, −, −1, 0, 1〉; of type 〈2, 2, 1, 1, 0, 0〉, consisting of two abelian groups:
- F under +, −, and 0;
- F \ {0} under ·, −1, and 1, with 0 ≠ 1,
with · distributing over +.
Read more about this topic: Field (mathematics)
Famous quotes containing the words definition and/or illustration:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“An illustration is no argument,nor do I maintain the wiping of a looking-glass clean, to be a syllogism;Mbut you all, may it please your worships, see the better for it.”
—Laurence Sterne (17131768)