Field Electron Emission

Field emission (FE) (also known as field electron emission and electron field emission) is emission of electrons induced by an electrostatic field. The most common context is FE from a solid surface into vacuum. However, FE can take place from solid or liquid surfaces, into vacuum, air, a fluid, or any non-conducting or weakly conducting dielectric. The field-induced promotion of electrons from the valence to conduction band of semiconductors (the Zener effect) can also be regarded as a form of FE. The terminology is historical because related phenomena of surface photoeffect, thermionic emission or Richardson-Dushman effect and "cold electronic emission", i.e. the emission of electrons in strong static (or quasi-static) electric fields, were discovered and studied independently from 1880s to 1930s. When field emission is used without qualifiers it typically means "cold emission."

Field emission in pure metals occurs in high electric fields: the gradients are typically higher than 1 gigavolt per metre and strongly dependent upon the work function. Electron sources based on field emission have a number of applications, but it is most commonly an undesirable primary source of vacuum breakdown and electrical discharge phenomena, which engineers work to prevent. Examples of applications for surface field emission include construction of bright electron sources for high-resolution electron microscopes or to discharge spacecraft from induced charges. Devices which eliminate induced charges are termed charge-neutralizers.

Field emission was explained by quantum tunneling of electrons in the late 1920s. This was one of the triumphs of the nascent quantum mechanics. The theory of field emission from bulk metals was proposed by Ralph H. Fowler and Lothar Wolfgang Nordheim. A family of approximate equations, "Fowler–Nordheim equations", is named after them. Strictly, Fowler-Nordheim equations apply only to field emission from bulk metals and (with suitable modification) to other bulk crystalline solids, but they are often used – as a rough approximation – to describe field emission from other materials.

In some respects, field electron emission is a paradigm example of what physicists mean by tunneling. Unfortunately, it is also a paradigm example of the intense mathematical difficulties that can arise. Simple solvable models of the tunneling barrier lead to equations (including the original 1928 Fowler-Nordheim-type equation) that get predictions of emission current density too low by a factor of 100 or more. If one inserts a more realistic barrier model into the simplest form of the Schrödinger equation, then an awkward mathematical problem arises over the resulting differential equation: it is known to be mathematically impossible in principle to solve this equation exactly in terms of the usual functions of mathematical physics, or in any simple way. To get even an approximate solution, it is necessary to use special approximate methods known in physics as "semi-classical" or "quasi-classical" methods. Worse, a mathematical error was made in the original application of these methods to field emission, and even the corrected theory that was put in place in the 1950s has been formally incomplete until very recently. A consequence of these (and other) difficulties has been a heritage of misunderstanding and disinformation that still persists in some current field emission research literature. This article tries to present a basic account of field emission "for the 21st century and beyond" that is free from these confusions.

Read more about Field Electron Emission:  Terminology and Conventions, Early History of Field Electron Emission, Total-energy Distribution, Fowler-Nordheim Plots and Millikan-Lauritsen Plots, Further Theoretical Information

Famous quotes containing the words field and/or emission:

    After all the field of battle possesses many advantages over the drawing-room. There at least is no room for pretension or excessive ceremony, no shaking of hands or rubbing of noses, which make one doubt your sincerity, but hearty as well as hard hand-play. It at least exhibits one of the faces of humanity, the former only a mask.
    Henry David Thoreau (1817–1862)

    Approximately 80% of our air pollution stems from hydrocarbons released by vegetation, so let’s not go overboard in setting and enforcing tough emission standards from man-made sources.
    Ronald Reagan (b. 1911)