Power Series
The generating function of the Fibonacci sequence is the power series
This series has a simple and interesting closed-form solution for :
This solution can be proven by using the Fibonacci recurrence to expand each coefficient in the infinite sum defining :
Solving the equation for results in the closed form solution.
In particular, math puzzle-books note the curious value, or more generally
for all integers .
More generally,
Read more about this topic: Fibonacci Number
Famous quotes containing the words power and/or series:
“The power to guess the unseen from the seen, to trace the implications of things, to judge the whole piece by the pattern, the condition of feeling life in general so completely that you are well on your way to knowing any particular corner of itthis cluster of gifts may almost be said to constitute experience.”
—Henry James (18431916)
“As Cuvier could correctly describe a whole animal by the contemplation of a single bone, so the observer who has thoroughly understood one link in a series of incidents should be able to accurately state all the other ones, both before and after.”
—Sir Arthur Conan Doyle (18591930)